Preventie van ernstige Covid-19 vanuit een kwetsbaarheidsmodel

12 Aug, 2020

Door: Fokje Russchen


Waarom is Covid-19 geëxplodeerd tot een pandemie? Om dat te kunnen begrijpen moeten we twee vragen beantwoorden. Wat is er specifiek aan dat wat SARS-CoV-2 teweegbrengt? En welke gastheerfactoren beïnvloeden het beloop van de ziekte? We kijken daarvoor naar zes factoren: virusbinding aan ACE2, RAS-balans, gewicht, geslacht, leeftijd en comorbiditeit. We brengen ze samen in een ‘kwetsbaarheidsmodel’, waar we conclusies aan verbinden. En bij elk van de factoren noemen we natuurlijke middelen met een mogelijke therapeutische rol.

Factor 1: virusbinding aan ACE2. SARS-CoV-2 dringt cellen binnen door te binden aan ACE2. De ernst van het verloop van de infecties is evenredig aan deze bindingsaffiniteit. Binding van virus wordt gevolgd door opname van ACE2 in de cel en vermindering van ACE2-activiteit op het celoppervlak. ACE2 is onderdeel van RAS (renine-angiotensine-systeem).
Ons begrip van RAS is verre van compleet. Het is een ingenieus systeem van controle en balans. Het zorgt voor vaatvernauwende, pro-proliferatieve en pro-inflammatoire effecten en, met moleculen die qua structuur slechts weinig van elkaar verschillen, voor tegengestelde effecten. Bovendien kan binding van hetzelfde molecuul aan verschillende receptoren tegengestelde effecten hebben. Waar ACE belangrijk is voor de pro-inflammatoire effecten van RAS staat ACE2 voor anti-inflammatoire effecten. Een verlaging van ACE2 door SARS-CoV-2-binding kan dus nadelig zijn in het ziekteproces.

Het ligt enerzijds voor de hand te streven naar een compensatie van het ACE2-verlies, maar anderzijds zou dit kunnen betekenen dat het virus meer bindingsplaatsen gepresenteerd krijgt. Vanwege deze gedachte is er ook twijfel geweest of de bloeddrukverlagende ACE-remmers (ACEI’s) en angiotensine-II-type 1-receptorblokker (ARB’s), het risico op een ernstig beloop van Covid-19 zouden kunnen vergroten. Dit is in een aantal studies onderzocht. Vooralsnog lijkt het gebruik van ARB’s of ACEi’s geen, of zelfs een licht verlagend, effect te hebben op sterfte door Covid-19.1,2-6
Er zijn alternatieven voor ACEi’s en ARB’s. In de natuur komen stoffen voor, met name flavonoïden,7 met ACE-remmende effecten. Luteoline, maar ook quercetine, rutine, kaempferol, rhoifoline, apigenine K,8,9 catechines10 en pycnogenol11 kunnen ACE remmen. Hun effect op ACE2 is minder onderzocht. Resveratrol blijkt te werken als een ARB en bovendien een angiotensine-II-type 2-receptor(AT2R)agonist te zijn.12,13

Lees het gehele artikel vanaf pagina 32 in OrthoFyto 4/20. Wilt u het gehele artikel als PDF bestand ontvangen? Bestel het dan hier voor € 3,50 Bronvermelding:
  1. COVID-19 op de Nederlandse Intensive Cares; Patiëntkarakteristieken en uitkomsten vergeleken met pneumoniepatiënten op de IC in 2017-2019. Versie 11-05-2020. Een NICE rapport.
  2. Ingraham NE, Barakat AG, Reilkoff R, et al. Understanding the Renin-Angiotensin-Aldosterone-SARS-CoV-Axis: A Comprehensive Review. Eur Respir J 2020.
  3. Sarzani,R. et al. Antagonizing the renin–angiotensin–aldosterone system in the era of COVID-19. Internal and Emergency Medicine (2020).
  4. Lopes,R. et al. Continuing Versus Suspending Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: Impact on Adverse Outcomes in Hospitalized Patients With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Am Heart J2020. May 13;226:49-59.
  5. Kim J, Choi SM, Lee J, et al. Effect of Renin-Angiotensin System Blockage in Patients with Acute Respiratory Distress Syndrome: A Retrospective Case Control Study. Korean J Crit Care Med 2017; 32: 154–163.
  6. Hsieh M-S, How C-K, Hsieh VC-R, et al. Preadmission antihypertensive drug use and sepsis outcome: impact of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Shock 2020; 53: 407–415.
  7. Hussain, F. et al. Identification of Hypotensive Biofunctional Compounds of Coriandrum sativum and Evaluation of Their Angiotensin-Converting Enzyme (ACE). Inhibition Potential, 2018 Oxid Med Cell Longev. 2018: 4643736.
  8. Guerrero,L. et al. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies. PLoS One. 2012; 7(11): e49493.
  9. Parichatikanond, W. et al. Blockade of the Renin-Angiotensin System with Delphinidin, Cyanin, and uercetin. Planta Medica 78(15):1626-32 · August 2012.
  10. Jian He Bioactivity-Guided Fractionation of Pine Needle Reveals Catechin as an Anti-hypertension Agent via Inhibiting Angiotensin-Converting Enzyme. Sci Rep. 2017; 7: 8867 Antioxidants (Basel). 2020 Jan; 9(1): 75.
  11. Borghi,C. et al. Nutraceuticals with a clinically detectable blood pressure‐lowering effect: a review of available randomized clinical trials and their meta‐analyses. Br J Clin Pharmacol. 2017 Jan; 83(1): 163–171.
  12. Kim EN et al. The protective effect of resveratrol on vascular aging by modulation of the renin-angiotensin system. Atherosclerosis. 2018 Mar;270:123-131.
  13. Andrade JM et al. Cross talk between angiotensin-(1-7)/Mas axis and sirtuins in adipose tissue and metabolism of high-fat feed mice. Peptides. 2014 May;55:158-65.
  14. Dwight L. McKee, et al. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res. 2020 Jul; 157: 104859.
  15. Cui, Q et al. Possible Inhibitors of ACE2, the Receptor of 2019-nCoV. Preprints 2020, 2020020047 .
  16. Chen, H.; Du, Q. Potential Natural Compounds for Preventing SARS-CoV-2 (2019-nCoV) Infection. Preprints 2020, 2020010358.
  17. CanrongWu et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica volume 10, Issue 5, May 2020, Pages 766-788.
  18. Maurya,V. et al. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. VirusDis. 2020.
  19. Wei X, Zhu X, Hu N, et al. Baicalin attenuates angiotensin II-induced endothelial dysfunction. Biochem Biophys Res Commun. 2015;465(1):101‐107.
  20. Thaisa de Almeida Pinheiro et al. Effects of Resveratrol and ACE Inhibitor Enalapril on Glucose and Lipid Profiles in Mice. Protein and Peptide Letters 24(9) 2017.
  21. Moran CS, et al. Resveratrol inhibits growth of experimental abdominal aortic aneurysm associated with upregulation of angiotensin-converting enzyme 2. Arterioscler Thromb Vasc Biol 37: 2195–2203, 2017.
  22. In-Ae Jang, et al. Effects of Resveratrol on the Renin-Angiotensin System in the Aging Kidney Nutrients. 2018 Nov; 10(11): 1741.
  23. Yi et al. Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells. Journal of Virology Sep 2004, 78 (20) 11334-11339.
  24. Theoharis C. COVID‐19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors. 2020 Apr 27: 10.1002.
  25. Uno, Y. Camostat mesilate therapy for COVID-19. Intern Emerg Med. 2020 Apr 29: 1–2.
  26. Zilbermintz, L., Leonardi, W., Tran, S. et al. Cross-inhibition of pathogenic agents and the host proteins they exploit. Sci Rep 6, 34846 (2016).
  27. Peng M, Watanabe S, Chan KWK, et al. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res. 2017;143:176‐185.
  28. Majumdar, S. et al. (2010). Proprotein Convertase Inhibitory Activities of Flavonoids Isolated from Oroxylum Indicum. Current medicinal chemistry. 17.
  29. Khaerunnisa, S. et al. Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study 1. Preprints 2020, 2020030226.
  30. Jo et al. Characteristics of flavonoids as potent MERS‐CoV 3C‐like protease inhibitors. Chemical Biology & Drug Design 94(11) August 2019.
  31. Ryu et al. Bioflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro)inhibition. Bioorganic & Medicinal Chemistry 18(22):7940-7 September 2010.
  32. Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361(9374):2045-6.
  33. Chen,F. et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds J Clin Virol. 2004 Sep; 31(1): 69–75.
  34. Yang, P., Gu, H., Zhao, Z. et al. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci Rep 4, 7027 (2015).
  35. de Carvalho Santuchi,M. et al. Angiotensin-(1-7) and Alamandine Promote Anti-inflammatory Response in Macrophages In Vitro and In Vivo. Mediators of Inflammation Volume 2019.
  36. Wösten-van Asperen RM, Lutter R, Specht PA, et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. The Journal of Pathology. 2011 Dec;225(4):618-627.
  37. Zambelli,V. et al. Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome. Intensive Care Med Exp. 2015 Dec; 3: 8.
  38. De Souza-Neto et al. Angiotensin-(1–7) and Alamandine on Experimental Models of Hypertension and Atherosclerosis. Current Hypertension Reports 20(2) February 2018.
  39. Byung Mun Park, PhD et al. Alamandine Protects the Heart Against Reperfusion Injury via the MrgD Receptor. Circ J 2018; 82: 2584–2593.
  40. Qaradakhi T, et al. Angiotensin (1–7) and Alamandine: Similarities and differences. Pharmacol Res. 2016;111:820–826.
  41. Li et al. Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways. Life Sciences. 206. 10.1016/j.lfs.2018.04.010.
  42. Uchiyama et al. Alamandine reduces leptin expression through the c-Src/p38 MAP kinase pathway in adipose tissue Tsuyoshi. PLoS ONE 12(6): e0178769.
  43. Costa,R. et al. Perivascular Adipose Tissue as a Relevant Fat Depot for Cardiovascular Risk in Obesity. Front Physiol 2018 Mar 21;9:253.
  44. Buis,D. et al. The association between leptin concentration and blood coagulation: Results from the NEO study. Thrombosis Research Volume 188, April 2020, Pages 44-48.
  45. Santos,A et al. Can the lung be obese? Lung tissue volume (Vtiss) is elevated in severe obesity and reduced by bariatric surgery. European Respiratory Journal 2016 48: PA5031.
  46. Saba Al Heialy et al. Regulation of angiotensin converting enzyme 2 (ACE2) in obesity: implications for COVID-19. It is made available under a CC-BY-NC 4.0 International license. bioRxiv preprint.
  47. Alti D et al. Emergence of Leptin in Infection and Immunity: Scope and Challenges in Vaccines Formulation. Front Cell Infect Microbiol. 2018 May 9;8:147.
  48. Song et al. Angiotensin-converting enzyme 2 attenuates oxidative stress and VSMC proliferation via the JAK2/STAT3/SOCS3 and profilin-1/MAPK signaling pathways. Regulatory Peptides Volume 185, 10 August 2013, Pages 44-51.
  49. Hisham Saleh Ibrahim et al. ACE2 Activation by Xanthenone Prevents Leptin-Induced Increases in Blood Pressure and Proteinuria During Pregnancy in Sprague-Dawley Rats. Reprod Toxicol2014 Nov;49:155-61.
  50. Jacobsson S et al. Leptin independently predicts development of sepsis and its outcome. J Inflamm (Lond). 2017; 14: 19. Published online 2017 Sep 11.
  51. Vallejos et al. Preventive Leptin Administration Protects Against Sepsis Through Improving Hypotension, Tachycardia, Oxidative Stress Burst, Multiple Organ Dysfunction, and Increasing Survival. Front Physiol. 2018; 9: 1800.
  52. Ning Tang et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia J Thromb Haemost. 2020 Apr; 18(4): 844–847.
  53. Hui Wang et al. Leptin in Thrombosis and Atherosclerosis. Curr Pharm Des. 2014;20(4):641-5.
  54. Vilahur,G. et al. New insights into the role of adipose tissue in thrombosis. Cardiovascular Research, Volume 113, Issue 9, July 2017, Pages 1046–1054.
  55. Fraga-Silva RA et al. The antithrombotic effect of angiotensin-(1-7) involves mas-mediated NO release from platelets1. Mol Med. 2008 Jan-Feb;14(1-2):28-35.
  56. Fraga-Silva RA et al. An orally active formulation of angiotensin-(1-7) produces an antithrombotic effect. Clinics (Sao Paulo). 2011;66(5):837-41.
  57. Lautner RQ et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. Curr Hypertens Rep (2014) 16:433 Page 5 of 6, 433 2013;112:1104–11.
  58. Yu HR et al Mol. Resveratrol Treatment ameliorates Leptin Resistance and Adiposity Programmed by the Combined Effect of Maternal and Post-Weaning High-Fat Diet. Nutr. Food Res. 2019 Apr 20:e1801385.
  59. Bonechi, C. et al. Effect of Resveratrol on Platelet Aggregation by Fibrinogen Protection. Biophys Chem 2017 Mar;222:41-48.
  60. Sodhi et al. Attenuation of Pulmonary ACE2 Activity Impairs Inactivation of des-Arg 9 bradykinin/BKB1R Axis and Facilitates LPS-induced Neutrophil Infiltration. Am J Physiol Lung Cell Mol Physiol . 2018 Jan 1;314(1):L17-L31.
  61. Hye Sook Yun-Choi, et al. Evaluation of some flavonoids as potential bradykinin antagonists. Archives of Pharmacal Research volume 16, pages283–288(1993).
  62. Van Guilder, G. et al. Acute and Chronic Effects of Vitamin C on Endothelial Fibrinolytic Function in Overweight and Obese Adult Humans. J Physiol 2008 Jul 15;586(14):3525-35.
  63. Wacharasint P, Boet al. One size does not fit all in severe infection: obesity alters outcome, susceptibility, treatment, and inflammatory response. Crit Care. 2013, 17:122. 10.1186/cc12794.
  64. Kalani et al. Sepsis Patients in Critical Care Units with Obesity: Is Obesity Protective? Cureus. 2020 Feb; 12(2): e6929.
  65. Fang L, et al. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8: e21. 2020.
  66. Leung JM, Yang CX, Tam A, et al. ACE-2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID-19. Eur Respir J 2020: 2000688.
  67. Iziah E Sama et al. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin–angiotensin–aldosterone. European Heart Journal, Volume 41, Issue 19, 14 May 2020, Pages 1810–1817.
  68. Verdecchia,P. et al. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020 Jun; 76: 14–20 Published online 2020 Apr 20.
  69. Adamzik M et al. ACE I/D but not AGT (-6)A/G polymorphism is a risk factor for mortality in ARDS. Eur Respir J 2007; 29: 482–488.
  70. Gennadi V. Glinsky. Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells by. Biomedicines 2020, 8(5), 129.
  71. Isidori AM et al. Leptin and aging: correlation with endocrine changes in male and female healthy adult populations of different body weights. J Clin Endocrinol Metab. 2000 May;85(5):1954-62.
  72. Márta Balaskó et al. J Chem Neuroanat. Leptin and Aging: Review and Questions With Particular Emphasis on Its Role in the Central Regulation of Energy Balance. 2014 Nov;61-62:248-55. Epub 2014 Sep 16.
  73. Alberto Lana et al. Serum Leptin Concentration is Associated with Incident Frailty in Older Adults. Aging and disease Volume 8, Number 2; 240-249, April 2017.
  74. Fernandez-Atucha A et al. Sex differences in the aging pattern of renin-angiotensin system serum peptidases. Biol Sex Differ. 2017;8:5.
  75. Mengfei Chen et al. Elevated ACE2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv.
  76. Sandra M. Osés et al. Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: Needs for Analytical Harmonization. Pharmacol Res. 2020 Jul; 157: 104859.
  77. Donato Gemmati et al. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? Int. J. Mol. Sci. 2020, 21, 3474.
  78. Nami, et al (2020): The Effect of ACE2 Inhibitor MLN-4760 on the Interaction of SARS-CoV-2 Spike Protein with Human ACE2: A Molecular Dynamics Study. ChemRxiv. Preprint.
  79. Guzik, T. et al. Cardiovasc Res 2020 Apr 30;cvaa106. COVID-19 and the Cardiovascular System: Implications for Risk Assessment, Diagnosis, and Treatment Options. Cardiovascular Research, cvaa106 april 2020.

Verzameling van artikelen van schrijvers die op niet-regelmatige basis voor ons schrijven.

Laat een reactie achter